本文来自作者[lejiaoyi]投稿,不代表言希号立场,如若转载,请注明出处:https://lejiaoyi.cn/zlan/202506-1015.html
小鼠的实验程序符合2010年/63/欧盟指令,并获得了奥地利教育,科学与研究部的批准(66.009/0145-WF/II/3B/2014和66.009/0277-WF/V3B/2017)。所有程序均计划减少痛苦以及鼠标数量。在标准的住房条件下(12 h:12 h反向光:黑暗周期:22:00及以10:00,25°C关闭),并随意提供食物和水。对于急性热操作,使用了体内电生理学,神经解剖学和行为测试,使用了C57BL6/J小鼠。RAXTM1.1(CRE/ERT2)SBLS/J小鼠(RAX-CREERT2; JAX 025521)与B6.CG-GT(ROSA)26Sortm14(CAG-TDTOMATO)(CAG-TDTOMATO)HZE/J(称为AI14; JAX 007914),; JAX 007914)B6; 129S6-POLR2ATN(PB-CAG-GCAMP5G,-TDTOMATO)TVRD/J(PC-G5-TDT; JAX 024477)或B6; 129S-SLC17A6TM1.1(FLPO)hze/j(slc17a6-ires2-at agax at agax at aga at(p)60-90。B6; 129P2-MAPTTM2ARBR/J(称为TAUMGFP-LOXP; JAX 021162)用于跨性别标记。通过越过AGRPTM1(CRE)LOWL/J(JAX 012899)和AI14报告基因小鼠来可视化AGRP+神经元。如所示,两性小鼠均用于实验。对于tanycytes的一级培养,使用了雄性和雌性Wistar大鼠。为了采样CSF,列出了雄性Wistar大鼠,该大鼠曾经由Semmelweis大学伦理审查委员会(PE/EA/1234-3/2017,匈牙利)批准。
C57BL6/J小鼠在25°C下单独饲养P60 – P100,并在25°C的ARIA Bio-C36 EVO孵化器(Tecniplast)中习惯,并在3天的湿度为42%的湿度为42%。在急性热挑战之前的一天,将miR-254孵化器(Sanyo)的温度设置为相关的目标温度。为了保持孵化器中的湿度,将装满1升水的玻璃放在孵化器中。湿度(〜42%)和二氧化碳水平(〜396 ppm)连续测量CO100 CO2显示器(Extech Instruments)。在第4天的09:00(即,在光周期的黑暗阶段开始之前的1小时),将小鼠放在没有食物和水的新实验笼中,暴露于25°C 1小时,然后返回其家用笼子。在第5天(09:00),小鼠再次放在没有食物和水的实验笼中,然后暴露于4°C或40°C持续1小时。随后,将小鼠以25°C的ARIA Bio-C36 EVO孵化器(Tecniplast)返回其笼子。
为了记录皮肤温度,C57BL6/J雄性小鼠被单独容纳,其壁间面积在实验前2-3天剃光了主要的棕色脂肪仓库上方。然后将小鼠暴露于40°C 1小时。对照小鼠保持在25°C。使用红外温度计60,61(DET-306,雌性计)记录在每只小鼠的山间区域和圆柱区域的体温。在热挑战前15分钟获得基线温度,然后将其切换到设置为40°C的热控制室(memmert,memm-ot3007s),然后不受干扰1小时。温度记录以15分钟的间隔恢复,在热地暴露结束后再恢复180分钟,而小鼠返回了家笼。
食物颗粒和小鼠以0.01 g精度(Sartorius,1000059011)分别确定食物摄入量和体重,以Entris II II ILISTER LINE LINE尺度进行测量。在热操作之前1小时确定基线参数。在某些实验中,在热挑战之后,将食物颗粒称为2 h(12:00),4 h(14:00)和24 h(09:00)。
在多参数实验(图5H,I和扩展数据图10i – K)中,食物和液体摄入量以及水平运动通过使用Phinotyper Cages(Noldus)同时记录。在此,通过记录小鼠鼻孔(ΔT)中断的红外光束(ΔT)中断的红外光束(ΔT)中断时,可以通过记录食用食物所花费的时间来近似食物的摄入量。使用相同的技术设置来测量喝酒的时间。通过Ethovision XT15(Noldus)分析数据。
对于免疫荧光标记,用异氟烷和冰冷的磷酸盐缓冲液(PB)(0.1 m,pH 7.4)对小鼠进行麻醉,然后用冰冷的多甲醛(4%在0.1 m pb中)。随后,将大脑去除并在4°C的同一固定剂中过夜。接下来,将大脑用0.1 m Pb洗涤,并在4°C下用0.025%Nan3作为抗真菌剂,直到加工为止。在0.02 m Tris缓冲盐水(TBS)中,将跨越ARC和PBN的五十微米厚的冠状冠状切片切成弧形(V1000; Leica)。将自由浮动切片存储在4°C下补充0.025%NAN3的0.02 m TBS中。为了产生30 µm玻璃座的部分,将大脑在含有30%蔗糖和0.025%NAN3的0.1 m Pb中冻结。然后,大脑在液体N2中闪烁,并嵌入最佳切割温度嵌入矩阵(OCT,Tissue-Tek)中。在低温恒温器的微落下(低温诺斯塔NX70; Thermo Scientific)上切开冠状切片。将脑切片在0.02 m TBS中洗涤,然后用含有5%正常驴血清的溶液,2%牛血清白蛋白(BSA,Sigma Aldrich),0.3%Triton X-100在22-24°C下0.02 m TBS中封闭2小时。主要抗体的精选组合如下:豚鼠抗fos(1:1,000;突触系统,226005),兔抗fos(1:2,000; Synaptic Systems,226003),兔子抗抗Dsred(1:200; Clontech/Clontech/takara/takara,clontech/takara,takara,632496),632496),1:1;600-406-379), chicken anti-RFP (1:500; Rockland, 600-901-379), goat anti-GFP (1:200; Abcam, ab6662), goat anti-mCherry (1:500; Antibodies Online, ABIN1440058), guinea pig anti-GluA1 (1:100; Alomone Labs,AGP-009),兔抗GluA2(1:100; Alomone Labs,AGC-005),鸡反尼恩(1:500; Millipore,abn91),兔子抗P44/42 MAPK(PERK1/2THR202/TYR202/TYR204; 1:200; 1:200;细胞信号技术,9101)山羊抗VEGFA(1:100; R&D系统,AF-493-NA),豚鼠抗Vglut2(1:200;突触系统,突触系统, 135404),兔抗VGLUT2(1:500; Synaptic Systems,135403)和鸡抗Vimentin(1:500; Synaptic Systems,172006)。将抗体的鸡尾酒孵育在0.02 m tbs的轨道振荡器上,在4°C下添加了2%正常驴血清,0.1%BSA,0.3%Triton X-100和0.025%Nan3的鸡尾酒。Secondary antibodies included: Alexa Fluor 488 donkey anti-rabbit IgG (1:2,000; Invitrogen, AB21206), Alexa Fluor 488-conjugated AffiniPure donkey anti-guinea pig IgG (1:300; Jackson ImmunoResearch, 706-545-148), Alexa Fluor 488-conjugated AffiniPure donkeyanti-mouse IgG (1:300; Jackson ImmunoResearch, 715-545-151), Alexa Fluor 647-conjugated AffiniPure donkey anti-rabbit IgG (1:300; Jackson ImmunoResearch, 711-605-152), Cy2-conjugated AffiniPure donkey anti-goat IgG (1:300; Jackson ImmunoResearch,705-225-147),Cy2偶联的驴子抗兔IgG(1:300; Jackson Immunoresearch,711-225-152),Cy3被偶联的affinipure Affinipure donkey antikey anti-Chicken anti-Chicken IgG(1:300; Jackson Immunoresearch;抗毒菌猪IgG(1:300; Jackson Immunoresearch,706-165-148),Cy3偶联的Affinipure驴子抗兔IgG(1:300; Jackson Immunoresearch,711-165-152),711-165-152),Cy5折叠式交接量抗浓约抗药量抗烟枪,抗抗菌抗IMGG(1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:30000;703-175-155),Cy5偶联的驴驴抗素猪IgG(1:300; Jackson Immunoresearch,706-175-148)和Cy5结合的链霉亲素(1:200; Jackson Immunoresearch,016-170--084)。将二抗在含有2%BSA,0.3%Triton X-100和Hoechst 33,342(1:10,000; Sigma Aldrich,用作核反染色的Sigma Aldrich,B2261)上的0.02 m TBS施用。用0.02 m TBS洗涤后,将玻璃安装式切片和覆盖覆盖覆盖,并用抗叶溶液组成,该溶液由10%Mowiol(Sigma,81381),26%甘油(Sigma,G7757),0.2M Tris Buffer(pH 8.0)和2.5%DABCO(Sigma,sigma,d278802)。离体脑切片(250–300 µm) 在贴片钳记录中以升级的甘油(25%,50%,80%和100%的1小时,100%的100%)清除后,并用与上述相同的防反溶液安装。
为了将vglut2定位在脑室区域,准备样品如先前发表的38。简而言之,用0.1 m Pb(20 mL)的冰冷的小鼠(n = 4)在0.1 m pb的情况下以冰冷的0.1 m pb(20 mL)和0.1%的PFA和0.1%的戊二醛(GA)。将切片在0.1 m Pb中洗涤3次。内源性过氧化物酶活性通过用1%H2O2处理10分钟来阻断内源性过氧化物酶活性。接下来,将切片阻塞(请参阅“免疫组织化学”),并用兔抗VGLUT2抗体进行免疫标记(1:1,000; M.Watanabe的礼物)62,并在4°C下孵育2天,以揭示出与Tanycytes的应用前终端。在0.1 M Pb中反复洗涤后,将切片暴露于生物素化的抗兔二抗(Vector Labs BA-1000)22-24°C下2小时。接下来,将切片在0.1 m Pb中洗涤,并与预先形成的Avidin-Biotin-过氧酶复合物(ABC Elite; Vector Laboratories)在4°C下孵育过夜。此后,将切片渗透,脱水,嵌入杜卡帕(Fluka,ACM)中,并在超级UCT Microtome(Leica)上切下60 nm的切割。成像是在配备TEM侧面安装相机(EMSIS Megaview III G3)的传输电子显微镜Fei Tecnai 10(100KV)上进行的。
雄性C57BL6/N小鼠(n = 3)用于波形蛋白和TH免疫染色。用含有4%PFA的固定剂,15%的苦味酸(按体积)和0.08%Ga灌注小鼠。将组织在无GA的固定剂中固定过夜,然后在PB中洗涤。将含有完整弧的切片保存在10%的蔗糖中,在0.1 m pb中30分钟,在0.1 m pb中蔗糖20%。将切片迅速冷冻/解冻(3倍),用0.1 m Pb洗涤(3×),并用鸡抗Vimentin抗体(1:1,000; Sigma在山羊血清中的Sigma)和小鼠抗体抗体(1:3,500 Sigma)在4°C的4°C上进行双重染色(1:3,500 Sigma)。在PB中反复洗涤后,将切片在生物素化的山羊抗小鼠中孵育1.5 h,在22-24°C下,在生物素化的山羊抗小鼠和生物素化的山羊抗Chicken IgG(1:200)。然后将切片洗涤(3×),并在ABC复合物(1:100 in pb; ABC Elite Kit,矢量实验室)在22-24°C下孵育1.5 h。用3,3-二氨基苯胺(DAB)可视化免疫反应,然后进行广泛洗涤。AGRP-CRE :: AI14小鼠被灌注到上面,并通过与上述相同的过程进行,但在4°C下将切片在鸡抗RFP抗体(1:2,000; Rockland)中孵育48小时。接下来是生物素化的山羊抗chicken IgG,然后是ABC(均为1.5 h),以可视化TDTOMATO+(AGRP-CRE)神经元。DAB反应后,将切片渗透(0.1 m pb中的1%OSO4)持续30分钟,在PB中洗涤,然后用双滴度H2O和50%乙醇洗涤。将切片在70%乙醇中保存在1%的乙醇中1小时,在95%和100%乙醇中洗涤,在氧化丙烷中洗涤(2×),然后将50%丙烷氧化物和50%杜尔卡帕坦的溶液保留3小时。将切片放在纯杜卡帕(Pure Durcupan)过夜,平坦地将其置于液体释放涂层的载玻片上,盖上ACLAR(电子显微镜科学),粘合和修剪。在形式上涂层的单插槽铜网格上收集切片,并使用飞利浦Tecnai Tecnai T-12 Biotwin电子显微镜成像。
PFA固定30 µm玻璃安装的部分用于鱼。我们按照制造商的建议(分子仪器; https://files.molecularinstruments.com/mi-protocol-rnafish-frozentissue-rev2.pdf)遵循“幻灯片上的通用样品”的HCR 3.0协议。简而言之,将载玻片解冻并逐渐脱水,在升高的乙醇梯度(50%,70%,100%)中,每张5分钟在22–24°C下5分钟。然后通过与1.2 µL的1 µM汤(1.2 pmol)在37°C的潮湿室中孵育,将组织样品与1.2 µl的1 µm储备(1.2 pmol)孵育过夜。用温暖的洗涤缓冲液(37°C)与5×SSCT缓冲液(即氯化钠/柠檬酸钠(5×SCC)(5×SCC)和0.1%Tween 20; Sigma Aldrich,9005-64-5)混合洗涤多余的探头。缓冲区/75%5×SSCT; 100%5×SSCT)在37°C下持续15分钟。接下来,将2 µL的放大器(发夹)在100 µL扩增缓冲液中稀释(从3 µm库存),并在22-24°C的潮湿室中施加到样品中12小时。此后,将载玻片用5×SSCT缓冲液洗涤。用Hoechst 33,342(1:10,000; Sigma Aldrich,B2261)在5×SSCT下在22-24°C下稀释15分钟。另一次用5×SSCT洗涤后,用由10%mowiol(Sigma,81381),26%甘油(Sigma,G7757),0.2 M Tris Buffer(pH 8.0)和2.5%DABCO(Sigma,D278802)组成的抗效率覆盖样品。
共聚焦显微照片是在Zeiss LSM710,LSM880/Airyscan或Zeiss LSM900/Airyscan 2设置上获取的。我们使用了Zeiss Axio观察者Apotome.2落叶显微镜的平台。通过使用配备有Plan-Apochromat 63×/1.4 Na油目标(Zeiss)的Zeiss LSM880/Airyscan显微镜确定接触波形蛋白+ tanycytes的VGLUT2+ Presynaps的数量。我们分别获取了2×2瓷砖扫描,涵盖了冠状脑切片中的每个tanycyte子类别,均相对于bregma,在-1.94 mm和-2.30 mm处均处于-1.94 mm和-2.30 mm。以25 µm的深度获取正交Z堆栈。量化PERK1/2强度的图像被捕获在配备有计划的25×/0.8 IMM KORR DIC M27物镜(Zeiss)的LSM880显微镜上。在Zeiss LSM900/Airyscan 2显微镜上捕获了单个突触中互补的GLUA2和VGLUT2信号的图像,该图像配备了Plan-Apochromat 40×/1.4 Na油目标。
共聚焦图像被加载在Imaris 9.0.2(Biplane)或Fiji 1.52e(https://imagej.net/fiji)中。
α1-,α2-,β1-和β2-tanycytes(所有波形蛋白+)分别以-1.94 mm和-2.30 mm相对于bregma,在-1.94 mm和-2.30 mm处捕获,在Zeiss LSM880显微镜上的25 µm(Z-SCAN)的组织深度(Z-SCAN),并在其图像上加载了iMaris x64.0.0.0.0.2.2.2.2.2.2.2.2.2.2.2 beste)。使用内置的扩展“细丝示踪剂”,沿其波形蛋白信号重建了tanycyte细丝。首先,我们确定了x,y和z轴(〜1 µm)上基础过程的厚度。随后,我们通过使用“自动训练方法”和分别设置每个tanycyte的躯体上的播种点来追踪这些基础过程。接下来,将跟踪集中,平滑并调节至直径为1 µm。要量化和重建假定的Presynaps中的VGLUT2信号,我们首先将其直径设置为 <0.5 µm. Subsequently, we isolated any such VGLUT2 signal with the built-in ‘Spots’ extension to reconstruct spheres. We then used a ‘find spots close to filaments’ Imaris XTension to quantify the density and distribution of those VGLUT2+ presynapses (spots) that apposed vimentin+ tanycyte processes (filaments). The maximal accepted distance from the spot centre (VGLUT2+) to the filament edge (vimentin+) was set to <0.5 µm. Thus, the total number of spots within 0.5 µm was used for statistical analysis.
To quantify the number of tanycytes activated by acute thermal manipulation in C57Bl6/J mice of both sexes or after chemogenetically activating glutamate inputs in B6;129S-Slc17a6tm1.1(flpo)Hze/J mice bilaterally injected with either AAV-EF1a-FRT-hM3D(Gq)-mCherry or AAV2/1-Syn-FRT-hM3D(Gq)-mCherry virus particles, we counted the absolute number of cFOS+ nuclei both in vimentin+ tanycytes along the wall of the third ventricle, and in mCherry+ neurons in the PBN per section from confocal micrographs at a tissue depth of 25 µm (z-scans).
Five-by-three tiled confocal images over the cross-section of the third ventricle were acquired on a Zeiss LSM880 microscope at an image depth of 8 bit. Confocal micrographs were loaded in Fiji 1.52e, and their signal intensity for either pERK1/2 or VEGFA was quantified in pre-defined tanycyte subgroups in male mice kept at either 25 °C or 40 °C. Images were acquired at identical settings (including laser power output, digital gain/offset) to allow for comparisons be made on signal intensities between the experimental groups.
Confocal images of Vegfa mRNA (FISH) from brains of both control and heat-exposed C57Bl6/J male mice that had received scrambled RNAi or Vegfa-targeting RNAi cocktails in the third ventricle were acquired on a Zeiss LSM710 microscope as 2 × 5 image tiles. Thus, the entire length of the ventricular wall was imaged as a z-stack of 25 µm. We reconstructed the wall of the third ventricle with the ‘Surface’ method (over a nuclear signal), thus limiting data collection to only the perikarya of tanycytes. To quantify the number of Vegfa mRNA precipitates in tanycytes, images were loaded in Imaris (Bitplane) with the Vegfa signal in the somata of tanycytes transformed into spots with a maximal diameter of <0.5 µm. Then, the number of spots (Vegfa) that had been in close apposition to the surface was determined by the ‘Find spots close to surface’ Imaris XTension (threshold set to 1 unit) and used for statistical analysis.
To test whether tanycytes are directly activated by long-range glutamatergic projections, the PBN of B6;129S-Slc17a6tm1.1(flpo)Hze/J was bilaterally injected with AAV-EF1a-FRT-hM3D(Gq)-mCherry or AAV2-Syn1-FRT-hM3D(Gq)-mCherry particles. Twenty-one days after virus delivery, mice were moved to an incubator (Tecniplast, Aria BIO-C36 EVO) set at 25 °C with a reverse 12 h:12 h light:dark cycle for 24 h. The following day, mice were injected intraperitoneally with either sterile physiological saline or CNO (5 mg kg−1; Tocris, 6329) dissolved in saline. After 1.5 h, mice were transcardially perfused with 0.1 M PB followed by ice-cold 4% PFA for histochemistry.
Two groups of P60-P90 C57Bl6/J male mice (n = 4 per group) were acutely exposed to 40 °C for 1 h and compared to mice kept at 25 °C. Their brains were rapidly removed, and 1-mm coronal brain slices were cut by using a steel brain matrix (Stoelting, 51386). The wall of the third ventricle was manually dissected, flash-frozen in liquid N2, and stored at −80 °C until processing. RNA was extracted with the RNeasy mini kit (Qiagen, 74536). To eliminate genomic DNA, samples were treated with DNase I. Thereafter, RNA was reverse transcribed to cDNA with the high-capacity cDNA reverse transcription kit (Applied Biosystems, 4368814). Quantitative real-time PCR was performed (CFX-connect, Bio-Rad) with primer pairs as follows: mouse Vegfa (forward: 5′-gaggggaggaagagaaggaa-3′, reverse: 5′-ctcctctcccttctggaacc-3′) and mouse glyceraldehyde-3-phosphate dehydrogenase (Gapdh; forward: 5′-aactttggcattgtggaagg-3′, reverse: 5′-acacattgggggtaggaaca-3′), which were designed with the NCBI Primer Blast software. Quantitative analysis of gene expression was performed with SYBR Green master mix (Life Technologies, 4364344). Expression levels were normalized to Gapdh, used as a housekeeping standard. Fold changes were determined with the Livak method63.
Primary cultures of tanycytes were generated as described64. P10 Wistar rats (local breeding) were decapitated, and their brains were extracted and immersed in ice-cold sterile Hank’s balanced salt solution (HBSS; Thermo Fisher). The median eminence was dissected under a stereomicroscope (Leica, M205) and crushed on 80-µm nylon meshes. Dissociated cells were cultured in DMEM/F12-phenol red free medium (Thermo Fisher) supplemented with 10% fetal calf serum (Invitrogen). Primary cultures of tanycytes were kept in 5% CO2 atmosphere at 37 °C. Media were half-refreshed every three days. Two days before protein extraction, primary cultures of tanycytes were split in 6-well plates and cultured in DMEM/F12-phenol red free medium supplemented with 5 µg ml−1 insulin from bovine pancreas (Sigma) and 100 µM putrescine dihydrochloride (Sigma).
Primary cultures of tanycytes were washed with ice-cold HBSS (Thermo Fisher), harvested, and pelleted at 1,000 rpm for 60 s. The supernatant was discarded. Pellets were resuspended in 300 mM NaCl, 50 mM HEPES (pH 8.0), 1% IGEPAL CA-630, 0.1% sodium deoxycholate, 1 mM DTT, 1 mM protease inhibitors (EDTA-free, Roche) and incubated on ice for 10 min. Cell lysates were flash-frozen in liquid N2 and stored at −80 °C.
Bands on SDS gels (n = 3 biological replicates) were cut into three pieces each and the corresponding proteins were extracted. The proteins of each band were collected as fractions (three for each sample) and subjected to tryptic digest and post-digest purification.
Approximately 1 µg of tryptic peptides (4.5 µl injection volume) from each fraction (in total three) were separated by an online reversed-phase (RP) HPLC (Dionex Ultimate 3000 RSLCnano LC system, Thermo Scientific) connected to a benchtop Quadrupole Orbitrap (Q-Exactive Plus) mass spectrometer (Thermo Fisher Scientific). Online separation was performed on analytical (nanoViper Acclaim PepMap RSLC C18, 2 μm, 100 Å, 75 μm internal diameter × 50 cm, Thermo Fisher Scientific) and trap (Acclaim PepMap100 C18, 3 μm, 100 Å, 75 μm internal diameter × 2 cm, Thermo Fisher Scientific) columns. The flow rate for the gradient was set to 300 µl min−1, with an applied maximum pressure at 750 mbar. The liquid chromatography method was a 175-min run and the exponential gradient was set at 5–32% buffer B (v/v%; 80% acetonitrile, 0.1% formic acid, 19.9% ultra-high purity LC-MS water) over ~118 min (7 curves). This was followed by a 30-min gradient of 50% buffer B (6 curves) and then increased to 90% of buffer B for another 5 min (5 curves). The liquid chromatography eluent was introduced into the mass spectrometer through an integrated electrospray metal emitter (Thermo Electron). The emitter was operated at 2.1 kV and coupled with a nano-ESI source. Mass spectra were measured in positive ion mode applying top ten data-dependent acquisition (DDA). A full mass spectrum was set to 70,000 resolution at m/z 200 (Automatic Gain Control (AGC) target at 3 × 106, maximum injection time of 30 ms and a scan range of 350–1,800 (m/z)). The MS scan was followed by a MS/MS scan at 17,500 resolution at m/z 200 (AGC target at 1 × 105, 1.8 m/z isolation window and maximum injection time of 70 ms). For MS/MS fragmentation, normalized collision energy for higher energy collisional dissociation was set to 30%. Dynamic exclusion was at 30 s. Unassigned and +1, +8 and > 排除+8带电的前体。最小AGC目标设置为1.00E3,强度阈值为1.4E4。同位素被排除在外。如果两个以上的肽片段覆盖并在扩展数据表1中列出,则可以接受目标。
〜p60年龄的wistar大鼠(全男性,n = 3,n = 3的25°C和40°C的n = 4)在25°C的孵化器(Tecniplast,Aria Bio-C36 Evo)中习惯于在25°C的孵化器中习惯于12 h 12 h 12 h光线下的孵化器(Tecniplast,Aria Bio-C36 Evo)。接下来,将大鼠急性暴露于25°C或40°C,持续1小时,用氯胺酮(50 mg kg -1)和撒母氨基(4 mg kg -1)的混合物进行麻醉,并将其头部安装在刻板框架(RWD)中。对于CSF采样,接近第四个心室。为此,切开了皮肤,将颈部肌肉缩回到侧面,并部分去除。由椎上上皮形成的心室的背壁被确定为对孔孔和第一个子宫颈椎骨之间小脑的银色膜尾。用标准的20μl实验室移液器(Eppendorf)将膜用26G注射器刺穿,并从第四脑室中除去15 µL CSF。样品在液体N2中闪烁,并存储在-80°C下。为了测试CSF的VEGF含量,我们按照制造商的说明使用了大鼠VEGF ELISA试剂盒(Sigma Aldrich; Rab0511)。使用ELISA板读取器设置为450 nm(Glomax Multi+,Promega),以读取20μl样品体积的VEGF水平。VEGF浓度在PG ML -1中表达。
急性冠状切片,包括在罗斯特罗珠轴上,第三个心室的内侧辅助部分是从p60-p90雄性C57BL6/J,RAXTM1.1(CRE/ERT2)SBLS/J :: B6; 129S6-POLRRRRRRRRRRRRRR2ATN(PB-CAG-CAG-GCAGP5G,-TTVOMATOM-TTTOMATOM-TTTTOMATOM-TTTOMATOM-TTTOMATOM--TOMATION)获得p60-p90雄性C57BL6/J,RAXTM1.1(CRE/ERT2)B6; 129S-SLC17A6TM1.1(FLPO)HZE/J小鼠。在斩首前用异氟烷(5%,1 min -1流速)麻醉小鼠,并迅速解剖其大脑。Two hundred fifty-µm-thick coronal slices were cut on a vibratome (VT1200S, Leica) in ice-cold cutting solution (pH 7.3) containing (in mM): 135 N-methyl--glucamine, 1 KCl, 1.2 KH2PO4, 10 glucose, 20 choline bicarbonate, 1.5 MgCl2, and 0.5 CaCl2 and continuously oxygenated with95%O2/5%CO2。在32°C下孵育下丘脑第三室/弧的尾部部分的急性切片1小时,并在含氧的ACSF(pH 7.3)中冷却至25°C,含有(pH 7.3):124 NaCl,NaCl,3 kCl,3 kCl,1.25 kh2po4,2 mgcl2,2 caCl2,2 caCl2,2 CaCl2,26 Nahahccl2,26 NahahaH2,26 NahahaH2,26 NahahaH2,26 NahahaH2,26 Nahahahcl2,26 NahahaH2,26 NahahaH2。对于记录,将脑切片转移到记录室(审查员D1,Zeiss),并用ACSF(25°C)以3毫升min -1的速率使用蠕动泵(PPS5,多机通道系统)。通过在P100玻璃拉杆上拉动的硼硅酸盐玻璃毛细管(Sutter Instruments)制成的贴片移液器(3-5MΩ)记录了tanycytes和神经元。斑块管中的细胞内溶液中含有(pH 7.3,300 MOSM;以毫米为单位):125 k-葡萄糖酸盐,20 kCl,0.1 EGTA,2 MGCL2,10 HEPES,10 HEPES,2 Na-ATP,0.4 Na-AtP,0.4 Na-GTP,10磷酸蛋白酶,10磷酸蛋白酶和0.5%Biocytin(Tocris,Tocris,33349)。
为了记录谷氨酸能的输入到tanycytes上,使用多灯700B放大器(分子设备)以10 kHz采样并在2 kHz中过滤,以-70 mV记录sepcs和tonic电流。使用MINI分析程序(SynaptoSoft)分析EPSC。SEPSC的幅度和频率均在α-和β-链酰基的统计学上进行了测试。S-AMPA(100 µm; Tocris,0254)被用于测试补品电流。为了定义对电流坡道的电压响应,在电流夹模式下记录了tanycytes,保持电流设置为0 pa。将电流注射量为1 s,连续步骤为5 pa,进行20扫。为了确定神经元尖峰对VEGFA释放的阈值的影响,急性切片要么用ACSF(对照)或Axitinib(40 µM; LC Laboratories A-10107)(VEGF受体的选择性抑制剂)进行超级订购。为了定义其动作电势阈值,在电流夹模式下记录了贴片夹神经元,保持电流集为0 pa。通过使用温度控制器(Warner Instruments,TC-324C),首先在25°C的重复度量中记录了弧形夹神经元,并在25°C的重复测量中记录了斑块夹神经元,并在25°C的重复度量中记录了α-tanycytes。与动作电位指数升高相对应的电压值用于统计分析(ClampFit,分子设备)。
我们记录了来自RaxTM1.1(CRE/ERT2)SBLS/J的急性切片中的神经元输入依赖性Ca2+瞬变。我们使用了AxioExaminer.D1显微镜(Zeiss),并使用水浸水W40×/1.0 DIC Vis-Ir Plan-Apochromat物镜(Zeiss)和CoolSNAP HQ2摄像头(PhotoMertics)可视化CA2+瞬变。我们首先进入了第三个心室壁的贴片钳神经元。为了诱导斑块钳神经元中的动作电位,我们在500毫秒内注入了10 pa至30 pa的电流步骤。同时,使用粘膜单色器(Vistron Systems)来可视化tanycytes中的GCAMP5G。为了证明Ca2+瞬变的AMPA受体(AMPAR)依赖性,在ACSF补充了2,3-二氧-6-硝基-7-磺胺酰基 - 甲氧烷[F] Quinoxaline(NBQX,20 µm,Tocris,1044)时,成像了tanycytes。在对神经元活动进行药理操作的记录中,从RAXTM1.1(CRE/ERT2)SBLS/J中的急性切片与B6; 129S6-POLR2ATN(PB-CAG-GCAMP5G,-TDTOMATOMATO)TTVRD/J小鼠(pb-cag-gcamp5g,-tdtomato)tvrd/j小鼠放置在µ-DISH 35 mm高室上,以供µ-dish 35 mm高室(IB)登上(IB)。LSM880共聚焦显微镜(Zeiss),并用平面型的20×/0.8 m27物镜(Zeiss)可视化。ACSF,100 µm picrototoxin(Tocris,1128),5 µm TTX(Tocris,1069),100 µm S-AMPA(Tocris,0254),20 µm NBQX(Tocris,1044)和Kcl 50 mm以1.5 ml mil-1 pulsy的速度(toccl 50 mm)和Kcl 50 mm进行了超过1.5 ml mil-1的速度(pper)。激发时,GCAMP5G信号的单平面图像以488 nm激光的5.5%占总有效功率输出的5.5%捕获,以避免光毒性。在8位的框架尺寸为512×512像素,速率为600毫秒,将针孔设置为447 µm。为了分析Ca2+瞬变, 图像系列是在斐济中加载的,并根据tanycyte somata的手动绘制区域和近三个心室的基础过程计算GCAMP5G瞬变的强度。将GCAMP5G信号标准化为tanycyts在其不活动和背景期间的信号强度之间的差异。
从B6; 129S-SLC17A6TM1.1(flpo)HZE/J小鼠在双重注射AAV1-CAGFLEXFLEFT-CHR2(MONOSCHR2(MONOS)-MMCHRERRY中,从B6; 129S-SLC17A6TM1.1(flpo)hze/j小鼠从B6; 129S-SLC17A6TM1.1(flpo)hze/j小鼠剪切,从B6; 129S-SLC17A6TM1.1(flpo)-MONOSCHR2(h134r)pbn-pobn-pobn pobn toppos-h134r)在tanycytes。用含氧ACSF用含有1 µM TTX(Tocris,1069)和100 µM 4-氨基吡啶(Sigma Aldrich,275875)的ACSF超级融合,均采用蠕动泵(Multichannel Systems,PPS2),以3 ml min -1的流速为25°°C。使用配备了DIC Prism(Olympus,Wi-Dichtra2)的BX51WI显微镜(Olympus)和Lumplanfi/ir 60x/0.90W和Plan N4×/0.10目标(Olympus)。ChannelRhodopsin-2(ChR2)-Mcherry+轴突紧密地置于第三个心室,并用535 nm处的螺旋(PE-100)光源(PE-100)的光源激发,并在Orca融合数码相机(Hamamatsu,c144440)上成像。将tanycytes夹在-70 mV的固定电位上,并在EPC10 USB Quadro Patch-clamp-clamp放大器(HEKA)上获取数据,以20 kHz采样,并以2 kHz过滤。CHR2-MCHERRY+端子用在470 nm(COOLLED,PE-100)的50毫秒光脉冲激发与记录tanycytes中可能的光学诱导EPSC的同步。在PatchMaster Next(HEKA)中分析了EPSC的时间响应(MS)和振幅(以PA为单位)。
我们在C57BL6/N小鼠中注射了tranilast(20 mg kg-1,腹膜内T0318-10mg; Sigma aldrich)(n = 4),并将其效果与天真对照(n = 4)的作用(n = 4),并用DMSO用DMSO用作车辆(d2650; d2650; sigma; sigma; sigma; sigma aldrich)。在暴露于25°C之前,将小鼠注射三层或DMSO 10分钟,然后连续几天接触到38°C。根据人类食品和药物管理局指南,根据人体表面积从人体表面积进行剂量转化来选择三层浓度:http://www.fda.gov/downloads/drugs/guidances/ucm078932.pdf)。通过将小鼠的人体表面积转化因子(12.3)中的人体剂量乘以其人剂量(每60 kg 100 mg,每60 kg,相当于1.6 mg kg -1)来计算小鼠中三层的同等mg kg -1剂量(12.3),从而计算出19.68 mg kg -kg -kg -kg -kg -kg -kg -kg -kg -kg -kg -kg -kg -kg在小鼠中。
在病毒输送后21天,对AAV病毒颗粒进行立体定位递送的所有小鼠均已处理。用异氟烷(5%; 0.6 L min -1流速)诱导麻醉。然后将小鼠通过鼻罩安装在用异氟烷(1.5%; 0.6 L min -1流速)维持的立体定位框架(RWD)中。用安装在典型的立体定位注射器(Stoelting)或R-480纳米纳LoLitre微型注射泵(RWD)的速度的速度为100 nl min-1的情况下,将病毒颗粒递送在典型的立体注射器(Stoelting)或R-480 NanoliTre微型注射泵(RWD)上输送病毒颗粒。AAV交付后10分钟慢慢撤回移液器。
B6.CG-GT(ROSA)26SORTM14(CAG-TDOMATO)HZE/J和B6; 129P2-MAPTTM2ARBR/J小鼠用于单方面注射神经元传入的神经元传入向单方面注射(后期contector)的神经元映射(均为raav8-ef1a-ef1a-mires-cherse chere)。µL)在以下坐标处(全部相对于董事):前后(AP):-0.1 mm,侧面(L):0.9 mm,背腹(DV):-2.3 mm。
To perform long-range axonal tracing to the third ventricle, C57Bl6/J mice were unilaterally injected (in the ARC) with AAVrg-CAG-GFP particles (70 nl, Addgene, 37825) as above at the following coordinates (all relative to bregma): AP: −1.94 mm;L:0.25毫米;DV:-5.86毫米。
对于ChR2辅助电路映射,以评估从PBN到Tanycytes的单突触输入,B6; 129S-SLC17A6TM1.1(flpo)HZE/J小鼠,将AAV1-CAG1-CAG1-CAG-FLEXFRT-FRT-CHR2(H134R)(H134R)(H134R) - 250 nl(250 nl)双侧注射75470-aav1)如上所述(相对于七核)在以下坐标处:AP:-5.2 mm;L:±1.25毫米;DV:-2.8毫米。
在对PBN投影以及行为测试中的化学作用操纵后测试tanycyte激活,B6; 129S-SLC17A6TM1.1(FLPO)HZE/J和RAXTM1.1(CRE/ERT2)SBLS/J小鼠越过SLC17A6-FLPOAAV2/1-SYN-FRT-HM3D(GQ)-MCHERRY颗粒(病毒矢量核心设施,加拿大神经传播平台; RRID:SCR_016477)或AAV-EF1A-FRT-HM3D(GQ) - MCHERRY颗粒(MCHERRY SERVICE of COCICENT of CROCICENT)相对于Bregma):AP:-5.2 mm;L:±1.25毫米;DV:-2.8毫米。
为了阻止行为实验中的tanycyte依赖性VAMP2介导的胞吐作用,将RAX-Creert2小鼠或SLC17A6-FLPO :: RAX-CREERT2小鼠在第三个心室中用AAV-TELC-FLEX-FLEX-FLEX-GFP56或AAV2-FLEX-FLEX-GFP(CORGINAS)(1.0; cOEGIND; cOED; cOED; coord; coord; coord; coord;:-1.70 mm; l:±0.0 mm;
为了阻止PBN神经元中的VAMP2介导的胞吐作用,将FLP依赖性AAV2-FLPON-TELC-GFP或AAV2-FLPON-GFP(对照)病毒注入了SLC17A6-IRES2-FLPO-D-MICE(250 nL)的SLC17A6-IRES2-FLPO-D-MICE(250 nL)的PBN。L:±1.25毫米;DV:-2.8毫米(均相对于Bregma)。
RAXTM1.1(CRE/ERT2)SBLS小鼠用于组织化学分析,以及与B6; 129S6-POLR2ATN(PB-CAG-CAG-CAG-GCAMP5G,-TDTOMATO)的tvrd/jement for CAS2+ Interation for Ca2+ Imbite in Intery Intery Intery Intery Intery Intery Intery Intery Intery Intery Intery Intery Intery Intectm1.1(CRE/ERT2)sbls/j小鼠3;150 mg kg -1他莫昔芬(Sigma,T5648),并在上次注射后3天处理。对于行为测试,将RAXTM1.1(CRE/ERT2)SBLS小鼠与B6; 129S-SLC17A6TM1.1(FLPO)HZE/J小鼠连续3天注射30天,以50 mg kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-1- hydroxytamoxifen(sigma h627888888888888888888)tanycytes中的AAV-TELC-FLEX-GFP构建体。
为了测试急性热暴露对食物摄入的影响,将P60 C57BL6/J小鼠习惯于设置为25°C的实验室24小时。接下来,将小鼠转移到热控制柜(Sanyo孵化器,miR-254)中,预设到25°C(对照)或40°C 1小时。热量暴露后,将小鼠单载于表型(noldus)中,放入孵化器(Memmert,Memm-Ot3007s和Tecniplast,Aria Bio-C36 EVO)中,设置为25°C,反向12 h:12 h:12 h光线:12 h灯光:暗循环再循环24小时。在急性热操纵后24小时,通过称重食物颗粒,测量所消耗的水量或对进食频率和一般迁移率进行评分(均在Ethovision XT15; Noldus中),对食物和液体的摄入量以及迁移率进行了监测。设计行为测试使每只鼠标都作为自己的控制(基线与后热暴露数据),从而通过反复测量方差分析(ANOVA)允许统计分析。
为了测试神经元活性引起的VEGFA从lanycytes释放影响食物的摄入量,p60 – p70雄性C57BL6/J小鼠在脑外注入1 nmol/1.5 µl Accell accell小鼠VEGFA sirna(Veggfa-rnai; dharmacon; dharmacon; dharmacel nonony-tar nonnon-tar nonnon-tar nonnont-tar)(对照; Dharmacon,D-001950-01-20)在第三个心室(AP:-1.70 mm; L:±0.0 mm; dv:-5.85 mm相对于Bregma)。首先,我们通过注入P60 – P70雄性C57BL6/J小鼠(每组n = 4)的敲低效率(每组n = 4)用炒RNAi或vegfa-rnai(如上所述)。RNAi输注八天后,将小鼠灌注冰冷的4%PFA,并加工了鱼类的大脑。接下来,为了测试VEGFA释放减少对热量暴露时食物摄入的影响,P60-P70雄性C57BL6/J小鼠是脑室内注入炒RNAi(对照)或Vegfa-RNAi(每组n = 8)。小鼠在25°C的孵化器(noldus)中单座(noldus)(noldus)(tecniplast,aria bio-c36 evo),且反向12 h:12 h光线:暗循环,并允许恢复8天。从第3天到第8天,我们分别通过加权食物颗粒和小鼠来监测食物摄入量和体重。在第9天和第10天,在孵化器(Sanyo,miR-254)中对小鼠进行热挑战(40°C,1小时)。接下来是如上所述测量泡沫的摄入量和体重24小时(表型,Noldus)。
为了测试PBN投影在tanycytes上的化学遗传激活的作用,男性RAXTM1.1(CRE/ERT2)SBLS :: B6; 129S-SLC17A6TM1.1(flpo)HZE/J小鼠刻有AV-telc-flex-gfp(第三级别)和AV-gfle(flpo)hze/j鼠标(第三个ventddrric)和A.(PBN,双侧)同时操纵tanycytes和谷氨酸能输出形成PBN。所有测试均在自我控制的设计中进行,在阻断VAMP2介导的tanycytes中的VAMP2介导的胞吐作用之前和之后,通过对编码ELTC的AAV-TELC-FLEX-GFP构建体的时间重组(图5G)的时间控制。病毒输送后21天,将小鼠分别放置在平均通风和温度控制(29°C)橱柜(MEMMERT,MEMM-OT3007S)的表型(Noldus)中,其反向12 h:12 h:12 h光照:暗循环。用Ethovision XT15(Noldus)监测食物摄入,运动和饮酒。允许小鼠习惯于实验设置(第21,22天)。接下来,记录基线活动24小时(第23天)。On day 24, mice were treated with 3 mg kg−1 CNO (Tocris, 6329) by both intraperitoneal delivery and in the drinking water, together with 5 mM saccharine (Sigma), to test the effect of chemogenetically activating PBN projections on feeding, drinking, and locomotor activity, whilst leaving VAMP2-mediated exocytosis from tanycytes unaffected.此后,将小鼠分别放在家用笼子中,以通过将50 mg kg-1 4-羟基氧法(Sigma)注入50 mg kg-kg-kg-kg-kg-kg-kg-kg-kg-kg-1,将其依赖于CRE依赖性重组,以表达RAX的tanycytes 3天(第25-27天)。然后允许小鼠再恢复3天(第28-30天)。在第31天,我们将小鼠送回表型,并允许他们再习惯48小时(第31天和第32天)。此后,我们记录了(第33天,第24小时)它们的基线活性,依赖于Tanycytes的VAMP2块。第二天(第34天), 我们通过注射CNO(3 mg kg -1)触发了PBN中的神经元活动,并将其与糖精(5 mm)一起使用,并再次测试了喂养,饮酒和运动活动。在最后一天(第35天),小鼠在冰冷的4%PFA上经心发灌注。常规处理他们的大脑以验证病毒输送的准确性。分析中没有任何小鼠被排除在分析之外。
测试在急性热暴露后投射到tanycytes的PBN神经元中阻塞VAMP2介导的胞胎病,SLC17A6TM1.1(FLPO)HZE/J小鼠在PBN中以AAV2-FLPON-GFP(CONTROM)(flpo)HZE/J小鼠双重注射。病毒输送后21天,将小鼠依次暴露于25°C(对照)或40°C(连续几天)。食物摄入量是通过测量食物颗粒的重量来确定的。为了测试抗tanycytes中VAMP2介导的胞吐作用是否可以改变急性热暴露后的食物摄入,将RAXTM1.1(CRE/ERT2)SBLS/J小鼠用AAV2-FLEX-FLEX-FLEX-GFP(对照)或AAV2-FLEX-FLEX-FLIX-FLEX-FELC-TELC-GFP在第三个心室中进行了内侧注射。为了诱导CRE依赖性重组,从手术后2天开始将小鼠连续3天注射他莫昔芬(150 mg kg-1)。病毒输送后21天,将小鼠依次暴露于25°C(对照)或40°C(连续几天)。在这两个实验中,食物摄入量都是通过测量食物颗粒的重量来确定的。
使用GraphPad Prism 8.0.2(GraphPad)分析数据。使用两尾学生的t检验比较了两组独立样本。通过配对两尾学生的t检验分析了配对比较的重复测量。通过单向方差分析分析了涉及一个独立变量的多组测量值,并通过Bonferroni的事后比较进一步证明。重复测量双向方差分析和三向方差分析用于在因素之间和内部评估,而Bonferroni的事后测试始终进行。Kolmogorov – Smirnov检验用于分析累积分布。数据表示为平均值±S.E.M.在整个过程中,除了显示中位数±四分位范围以及最小和最大值的盒子和晶状图。统计显着性表示为 *p <0.05,** p <0.01或*** p <0.001。对于神经解剖学,选择了最小的n = 3小鼠的所需队列大小,相关图形传说中指定了较高的小鼠数量。
图1B:双向重复测量方差分析:相互作用(性与温度):F = 0.005,p = 0.942;性别:F = 7.969,p = 0.013;温度:F = 32.240,p <0.001。Bonferroni的多重比较:t = 4.067,** p = 0.002(男性在25°C对40°C);t = 3.963,** p = 0.003(在25°C的女性对40°C)。
图1C:重复测量方差分析:F = 18.030,p <0.001。
图1F:双向方差分析:相互作用(性与温度):F = 1.497,p = 0.249;性别:F = 3.589,p = 0.087;温度:F = 81.700,p <0.0001。Bonferroni的多重比较:T = 6.788,*** P <0.001(男性25°C对40°C);t = 5.969;*** p <0.001(女性为25°C对40°C)。
图3b,中间:频率:学生的t检验(双面),t = 0.476,p = 0.639;α-与β-链球菌。
图3b,右:振幅:学生的t检验(双面),t = 3.006,** p = 0.007;α-与β-链球菌。
图4b:学生的t检验(双面),t = 7.120,*** p <0.001。
图4E:重复测量方差分析:相互作用:F = 3.974,p = 0.066;治疗(ACSF与Axitinib):F = 1.947,p = 0.185;温度:F = 23.880,p <0.001;主题,f = 6.723;p <0.001。Bonferroni的多重比较:ACSF(25°C对38°C),t = 4.865;*** p <0.001;Axitinib(25°C对38°C)T = 2.046;p = 0.1201。
图4G:学生的t检验(双面),t = 3.143, *p = 0.020。
图4H:重复测量方差分析:相互作用(治疗与温度),F = 1.081,p = 0.316;温度:F = 17.310,p = 0.001;处理:F = 3.089,p = 0.094。Bonferroni的多重比较:温度:控制,t = 3.677,** p = 0.005;VEGFA-RNAI,t = 2.207,p = 0.089(不显着)。
图4K:学生的t检验(双面),** p <0.01。
图5b,右:学生的t检验(双面),** p <0.01;n =每组3只小鼠。
图5C:双向方差分析:相互作用(电信与温度):F = 8.682,p = 0.042;GFP与电信:F = 0.683,p = 0.455;温度:F = 16.34,p = 0.0156。Bonferroni的多重比较:P = 0.016(GFP; 25°C对40°C);p = 0.964(电信; 25°C对40°C)。
图5i:双向重复测量方差分析:时间:F = 6.202,p = 0.026;治疗:F = 6.839,p = 0.048;相互作用(时间与治疗):F = 1.944,p = 0.208。
有关研究设计的更多信息可在与本文有关的自然投资组合报告摘要中获得。
赞 (5)
评论列表(3条)
我是言希号的签约作者“lejiaoyi”
本文概览: 小鼠的实验程序符合2010年/63/欧盟指令,并获得了奥地利教育,科学与研究部的批准(66.009/0145-WF/II/3B/2014和66.009/0277-WF/V3...
文章不错《脑干 - 高丘脑神经元电路可减少热暴露时的进食》内容很有帮助